Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Front Med (Lausanne) ; 11: 1338947, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633306

RESUMEN

Background: Interstitial lung disease (ILD) is a common complication of idiopathic inflammatory myopathy (IIM), which is one of the connective tissue diseases (CTD). It can lead to poor prognosis and increased mortality. However, the distribution and role of the lower respiratory tract (LRT) microbiome in patients with IIM-ILD remains unclear. This study aimed to investigate the microbial diversity and community differences in bronchoalveolar lavage fluid (BALF) in patients with IIM-ILD. Methods: From 28 June 2021 to 26 December 2023, 51 individual BALF samples were enrolled, consisting of 20 patients with IIM-ILD, 16 patients with other CTD-ILD (including 8 patients with SLE and 8 with RA) and 15 patients with CAP. The structure and function of microbiota in BALF were identified by metagenomic next-generation sequencing (mNGS). Results: The community evenness of LRT microbiota within the IIM-ILD group was marginally lower compared to the other CTD-ILD and CAP groups. Nonetheless, there were no noticeable differences. The species community structure was similar among the three groups, based on the Bray-Curtis distance between the samples. At the level of genus, the IIM-ILD group displayed a considerably higher abundance of Pseudomonas and Corynebacterium in comparison to the CAP group (p < 0.01, p < 0.05). At the species level, we found that the relative abundance of Pseudomonas aeruginosa increased significantly in the IIM-ILD group compared to the CAP group (p < 0.05). Additionally, the relative abundance of Prevotella pallens was significantly higher in other CTD-ILD groups compared to that in the IIM-ILD group (p < 0.05). Of all the clinical indicators examined in the correlation analysis, ferritin level demonstrated the strongest association with LRT flora, followed by Serum interleukin-6 level (p < 0.05). Conclusion: Our research has identified particular LRT microorganisms that were found to be altered in the IIM-ILD group and were significantly associated with immune function and inflammatory markers in patients. The lower respiratory tract microbiota has potential in the diagnosis and treatment of IIM-ILD.

2.
J Colloid Interface Sci ; 666: 472-480, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613970

RESUMEN

All-solid-state lithium batteries (ASSLBs) are considered promising energy storage systems due to their high energy density and inherent safety. However, scalable fabrication of ASSLBs based on transition metal sulfide cathodes through the conventional powder cold-pressing method with ultrahigh stacking pressure remains challenging. This article elucidates a dry process methodology for preparing flexible and high-performance FeS2-based ASSLBs under low stack pressure by utilizing polytetrafluoroethylene (PTFE) binder. In this design, fibrous PTFE interweaves Li6PS5Cl particles and FeS2 cathode components, forming flexible electrolyte and composite cathode membranes. Beneficial to the robust adhesion, the composite cathode and Li6PS5Cl membranes are tightly compacted under a low stacking pressure of 100 MPa which is a fifth of the conventional pressure. Moreover, the electrode/electrolyte interface can sustain adequate contact throughout electrochemical cycling. As expected, the FeS2-based ASSLBs exhibit outstanding rate performance and cyclic stability, contributing a reversible discharged capacity of 370.7 mAh g-1 at 0.3C after 200 cycles. More importantly, the meticulous dQ/dV analysis reveals that the three-dimensional PTFE binder effectively binds the discharge products with sluggish kinetics (Li2S and Fe) to the ion-electron conductive network in the composite cathode, thereby preventing the electrochemical inactivation of products and enhancing electrochemical performance. Furthermore, FeS2-based pouch-type cells are fabricated, demonstrating the potential of PTFE-based dry-process technology to scale up ASSLBs from laboratory-scale mold cells to factory-scale pouch cells. This feasible dry-processed technology provides valuable insights to advance the practical applications of ASSLBs.

3.
Int J Microbiol ; 2024: 7172386, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590774

RESUMEN

Atopic dermatitis is one of the most common dermatologic problems, especially in children. Given the ability of symbiotic microorganisms in modulating the immune system, probiotics administration has been studied in previous research in the management of atopic dermatitis. However, there are conflicting results between studies. In this study, we aimed to assess the effectiveness of mixed probiotics as a treatment option for atopic dermatitis induced by ovalbumin. BALB/c juvenile mice were classified and divided into the ovalbumin group, mixed probiotic group (ovalbumin + LK), and control group. Except for the control group, all mice were sensitized with ovalbumin to establish a model of atopic dermatitis. The mixed probiotics were given by gavage for 14 days. Mice body weight, skin lesions, skin inflammation, ovalbumin-specific Ig, the number of Treg and CD103+DC, and the expression level of PD-1/PD-L1 were examined. The results showed that mixed probiotics can improve body weight and alleviate skin symptoms. Mixed probiotics reduced serum Th2 inflammatory factors, eosinophils, mast cell degranulation, mast cell count, and the expression of ovalbumin-specific immunoglobulin E/G1 and increased the anti-inflammatory cytokine interleukin-10, Treg cells, CD103+DC cells, and the expression level of PD-1/PD-L1. These findings suggest that mixed probiotics could be a viable treatment option for atopic dermatitis and provide insight into the underlying mechanisms involved.

4.
BMC Musculoskelet Disord ; 25(1): 225, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509493

RESUMEN

OBJECTIVE: This study sought to determine the incidence and risk factors of blood transfusion among patients undergoing total knee revision (TKR) using a nationwide database. METHODS: A retrospective data analysis was conducted based on the Nationwide Inpatient Sample (NIS), enrolling patients who underwent TKR from 2010 to 2019 with complete information. The patients were divided into two groups based on whether they received blood transfusion or not. The demographic characteristics (race, sex, and age), length of stay (LOS), total charge of hospitalization, hospital characteristics (admission type, insurance type, bed size, teaching status, location, and region of hospital), hospital mortality, comorbidities, and perioperative complications were analyzed. Finally, we conducted univariate and multivariate logistic regression to identify factors that were associated with TKR patients to require blood transfusion. RESULTS: The NIS database included 115,072 patients who underwent TKR. Among them, 14,899 patients received blood transfusion, and the incidence of blood transfusion was 13.0%. There was a dramatic decrease in the incidence over the years from 2010 to 2019, dropping from 20.4 to 6.5%. TKR patients requiring transfusions had experienced longer LOS, incurred higher total medical expenses, utilized Medicare more frequently, and had increased in-hospital mortality rates (all P < 0.001). Independent predictors for blood transfusion included advanced age, female gender, iron-deficiency anemia, rheumatoid disease, chronic blood loss anemia, congestive heart failure, coagulopathy, uncomplicated diabetes, lymphoma, fluid and electrolyte disorders, metastatic carcinoma, other neurological diseases, paralysis, peripheral vascular disorders, pulmonary circulation disorders, renal failure, valvular disease, and weight loss. In addition, risk factors for transfusion in TKR surgery included sepsis, acute myocardial infarction, deep vein thrombosis, pulmonary embolism, gastrointestinal bleeding, heart failure, renal insufficiency, pneumonia, wound infection, lower limb nerve injury, hemorrhage/seroma/hematoma, wound rupture/non healing, urinary tract infection, acute renal failure, and postoperative delirium. CONCLUSIONS: Our findings highlight the importance of recognizing the risk factors of blood transfusion in TKR to reduce the occurrence of adverse events.


Asunto(s)
Pacientes Internos , Medicare , Humanos , Femenino , Anciano , Estados Unidos/epidemiología , Estudios Retrospectivos , Incidencia , Factores de Riesgo , Complicaciones Posoperatorias/epidemiología , Extremidad Inferior
5.
J Colloid Interface Sci ; 659: 533-541, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190780

RESUMEN

Li metal anodes have high specific capacity and low electrode potential, and have always been considered as one of the most promising anode materials. However, the growth of Li dendrites, unstable solid electrolyte interface layer (SEI), severe side reactions at the Li/electrolyte interface, and infinite volume expansion of the Li anode seriously hinder the practical application of solid-state Li metal batteries (LMBs). Herein, we report a polyurethane elastomer (TPU) material with high elasticity and interfacial stability as a solid polymer electrolyte (SPE) for LMBs. The synergistic effects of its designed soft chain forging (PEO) and hard chain segments (IPDI) can enhance Li ion conductivity, elastic modulus and flexibility of the SPE to settle the challenges of the Li metal anodes. Moreover, Li2S, as a solid-state electrolyte additive, is able to effectively inhibit the occurrence of side reactions at the interface between Li metal and SPE, promote the decomposition of N(CF3SO2)2- and in-situ generation of LiF with low Li+ diffusion barrier and excellent electronic insulation, achieving rapid Li ion transport and uniform Li deposition. As a result, stable cycle of up to 1400 h has been achieved for a Li||TPU-Li2S||Li battery at 0.1 mA/cm2 at 50 ℃, accompanied with a stable cycling performance of 350 h at a higher current density of 0.5 mA/cm2. Finally, the LiFePO4||TPU-Li2S||Li full battery exhibits an excellent cycling performance with a capacity retention rate of 80 % after 500 cycles at 1C. This simple and low-cost strategy provides novel design thoughts for practical application of high-performance SPEs in stable and long-life LMBs.

6.
Environ Manage ; 73(4): 769-776, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37940723

RESUMEN

Landfill cover soils play an important role in mitigating landfill methane (CH4) emissions. Incorporating biochar into the soil has proven effective in reducing CH4 emissions. However, the role of hydrophobic biochar in this context remains underexplored. This study investigated the CH4 removal efficiency of a biochar-modified landfill soil cover column (RB) and hydrophobic biochar-modified landfill soil cover column (RH) under varying CH4 influx gas concentrations (25 and 35%), simulated CH4 inflow rates (10, 15, and 20 ml/min), and temperatures (20, 25, 30, 35, and 40 °C). RH consistently outperformed RB in terms of CH4 removal efficiency under these experimental conditions. The optimal conditions for CH4 degradation by both RB and RH were observed at a CH4 influx gas concentration of 35%, a simulated CH4 inflow rate of 10 ml/min, and a temperature of ~30 °C. RH achieved a CH4 removal rate of up to 99.96%. In summary, the addition of hydrophobic biochar enhanced the air permeability and hydrophobicity of landfill cover soils, providing a promising alternative to conventional cover soils for reducing CH4 emissions from landfills.


Asunto(s)
Metano , Eliminación de Residuos , Suelo/química , Carbón Orgánico/química , Instalaciones de Eliminación de Residuos , Oxidación-Reducción , Microbiología del Suelo
7.
ACS Sens ; 8(10): 3772-3780, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37842874

RESUMEN

Continuous real-time monitoring of air quality is of great significance in the realms of environmental monitoring, personal safety, and healthcare. Recently, flexible gas sensors have gained great popularity for their potential to be integrated into various smart wearable electronics and display devices. However, the development of gas sensors with superior sensitivity, breathability, and stretchability remains a challenge. Here, a new high porosity thermoplastic polyurethane (HP-TPU) foam was reported for gas sensors, which exhibited large three-dimensional network structures and excellent mechanical properties. The HP-TPU foam was achieved by using a simple steam-induced method, which was suitable for mass production. The unique structure endowed this foam with 77.5% porosity, 260% strain ability, and 0.45 MPa Young's modulus, which improved 35, 31, and 80%, respectively, compared to previously reported traditional TPU foam (T-TPU) prepared by the drying method. In addition, the foam presented high gas permeability (312 g/m-2, 24 h) and excellent stability, and it remained undamaged even after 2000 cycles at 70% strain. The sensing material was coated on a PET flexible interdigital electrode and sandwiched between two HP-TPU foam layers for a gas sensitivity test. Due to the easy diffusion of gas between the pores and contact with the sensing materials, the HP-TPU foam exhibited a significant reduction of 85% in average response time and 46% in average recovery time, compared to the T-TPU foam. A wearable sensing device, comprising sensing, data processing, and wireless transmission modules, was successfully developed to enable outdoor testing and achieved a detection range at the ppb level. Finally, the cytotoxicity test results confirmed that this flexible gas sensor did not harm human health. These results proved that this HP-TPU foam was an ideal matrix for the flexible gas sensor, exhibiting great application potential in the fields of seamless human-machine integration.


Asunto(s)
Poliuretanos , Dispositivos Electrónicos Vestibles , Humanos , Poliuretanos/química , Electrónica , Porosidad
8.
BMC Infect Dis ; 23(1): 725, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880573

RESUMEN

BACKGROUND: The aim of this study was to evaluate the role of Xpert MTB/RIF assay in the detection of Mycobacterium tuberculosis for differentiating tuberculosis intrathoracic lymphadenopathy from sarcoidosis intrathoracic lymphadenopathy. METHODS: The patients who were suspected to having sarcoidosis or tuberculosis intrathoracic lymphadenopathy at the Shanghai Pulmonary Hospital between October 1, 2020 and June 30, 2021 were retrospectively evaluated in this study. All patients underwent endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and Xpert analysis. Differences in clinical and radiological features were recorded. The diagnostic performances of EBUS-TBNA Xpert, acid-fast bacilli, culture, and peripheral blood QuantiFERON-TB Gold (QFT) for differentiating sarcoidosis from tuberculosis intrathoracic lymphadenopathy were analyzed. RESULTS: A total of 119 patients were included in this analysis. Of those, 83 patients were finally diagnosed with sarcoidosis (N = 50) and tuberculosis (N = 33) intrathoracic lymphadenopathy. Young individuals were more likely to have tuberculosis versus sarcoidosis intrathoracic lymphadenopathy (P = 0.006). Markers of inflammation, including fever, leukocytes, and serum ferritin levels, were significantly higher in tuberculosis versus sarcoidosis intrathoracic lymphadenopathy (P < 0.01). Bilateral lung involvement and symmetry intrathoracic lymphadenopathy were more common in sarcoidosis intrathoracic lymphadenopathy (P < 0.01). In addition, the longest diameter of intrathoracic lymphadenopathy (in cm) was significantly larger in sarcoidosis intrathoracic lymphadenopathy (P = 0.001). However, the largest diameter of lung lesions was significantly shorter (P = 0.005). The sensitivity and specificity values of Xpert and QFT for differentiating these two diseases were 69.70% and 100%, and 96.43% and 91.84%, respectively. CONCLUSION: Xpert MTB/RIF is recommended for the diagnosis of tuberculosis intrathoracic lymphadenopathy using EBUS-TBNA samples. A negative QFT suggests the exclusion of the diagnosis of tuberculosis intrathoracic lymphadenopathy.


Asunto(s)
Linfadenopatía , Mycobacterium tuberculosis , Sarcoidosis , Tuberculosis , Humanos , Estudios Retrospectivos , Diagnóstico Diferencial , China , Linfadenopatía/diagnóstico , Linfadenopatía/patología , Tuberculosis/diagnóstico , Mycobacterium tuberculosis/genética , Sensibilidad y Especificidad
9.
Pharmacol Res ; 196: 106920, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37716548

RESUMEN

Engineered gut microbiota represents a new frontier in medicine, in part serving as a vehicle for the delivery of therapeutic biologics to treat a range of host conditions. The gut microbiota plays a significant role in blood pressure regulation; thus, manipulation of gut microbiota is a promising avenue for hypertension treatment. In this study, we tested the potential of Lactobacillus paracasei, genetically engineered to produce and deliver human angiotensin converting enzyme 2 (Lacto-hACE2), to regulate blood pressure in a rat model of hypertension with genetic ablation of endogenous Ace2 (Ace2-/- and Ace2-/y). Our findings reveal a sex-specific reduction in blood pressure in female (Ace2-/-) but not male (Ace2-/y) rats following colonization with the Lacto-hACE2. This beneficial effect of lowering blood pressure was aligned with a specific reduction in colonic angiotensin II, but not renal angiotensin II, suggesting the importance of colonic Ace2 in the regulation of blood pressure. We conclude that this approach of targeting the colon with engineered bacteria for delivery of ACE2 represents a promising new paradigm in the development of antihypertensive therapeutics.


Asunto(s)
Hipertensión , Lacticaseibacillus paracasei , Masculino , Ratas , Animales , Femenino , Humanos , Enzima Convertidora de Angiotensina 2 , Angiotensina II/farmacología , Peptidil-Dipeptidasa A/genética , Hipertensión/tratamiento farmacológico , Presión Sanguínea , Angiotensina I/farmacología
10.
Chempluschem ; 88(8): e202300287, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37528443

RESUMEN

A white oil-in-water novel emulsion stabilized by TiO2 nanoparticles with UVB shielding properties and proanthocyanidins with antioxidant activity was prepared, where the proanthocyanidins aggregated at the oil-water interface to reduce interfacial tension while TiO2 nanoparticles were dispersed in the continuous water phase to hinder droplet coalescence. It was found that the average oil droplet size was less than 10 µm and decreased with the increase of proanthocyanidins concentration, but the increase of the content of TiO2 nanoparticles had little effect on it. The combination of TiO2 nanoparticles and proanthocyanidins was versatile for oil phases with different polarities, and the resulting emulsion exhibited high stability in the face of centrifugation, heating and prolonging storage time. After encapsulating the UVA filter avobenzone in white oil, the emulsion was endowed with the ability to resist UVB and UVA. Further, the emulsion showed great free radical scavenging ability for superoxide anion radical (⋅O2 - ), hydroxyl radical (⋅OH) with the clearance rate of over 70 %, indicating the good antioxidant activity. The ingenious combination of UVB, UVA filter and antioxidant with emulsion as carrier provides a new idea for the preparation of full-band sunscreen emulsion.

11.
Nanotechnology ; 34(43)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37499632

RESUMEN

Developing cathode materials with high specific capability and excellent electrochemical performance is crucial for the advancement of aluminum-ion batteries, which leverage the high theoretical energy density of aluminum metal anodes. In this paper, we investigated the interaction ofAlCl4cluster and Al atom with AlN (-100) and (001) monolayer using density functional theory to assess the applicability of AlN as cathode material for aluminum-ion batteries. The results show that the AlN (001) monolayer is the most effective for adsorbing and accommodatingAlCl4clusters. Moreover, the AlN (001) monolayer maintains metallic behavior at different concentrations of theAlCl4cluster, laying the foundation for its battery application. The theoretical storage capacity of theAlCl4cluster is 105.93mAhg-1,which exceeds that of the Al/graphite battery. The formation energy ofAlCl4-intercalated AlN compounds is -2.74 eV, and the intercalant gallery height is moderate. Furthermore, the diffusion barrier of 0.19 eV forAlCl4cluster between the AlN (001) monolayer provides high rate capability. The results indicate that AlN monolayer may be a potential cathode material for aluminum-ion batteries.

12.
Eur J Pharmacol ; 955: 175913, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37460053

RESUMEN

Sorafenib is an important first-line treatment option for liver cancer due to its well-characterized safety profile. While novel first-line drugs may have better efficacy than Sorafenib, they also have limitations such as worse safety and cost-effectiveness. In addition to inducing apoptosis, Sorafenib can also trigger ferroptosis, which has recently been recognized as an immunogenic cell death, unleashing new possibilities for cancer treatment. However, resistance to Sorafenib-induced ferroptosis remains a major challenge. To overcome this resistance and augment the efficacy of Sorafenib, a wide range of nanomedicines has been developed to amplify its pro-ferroptotic effects. This review highlights the mechanisms underlying Sorafenib-triggered ferroptosis and its resistance, and outlines innovative strategies, particularly nanomedicines, to overcome ferroptosis resistance. Moreover, we summarize molecular biomarkers that signify resistance to Sorafenib-mediated ferroptosis, which can assist in predicting therapeutic outcomes.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Apoptosis , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral
13.
Sci Rep ; 13(1): 7342, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147352

RESUMEN

Cockroach control in Beijing's residential households is supported by the local government previously but now it is paid by the residents themselves. Under the new residential household cockroach control strategy, the evolutionary game theory is applied in this study to construct an evolutionary game model for the choice behaviour of both PCO (Pest Control Operation) enterprises and the local governments under government regulation. The evolutionary stabilization strategies under different situations were suggested and the key factors for the evolutionary game behaviour were analyzed through Matlab simulation. It was found that the benefits and costs of the local governments' promotion for the cockroach eradication activities, the incremental benefits of PCO enterprises through government publicity and the subsidies for the activities, and the additional costs of PCO enterprises to participate in cockroach eradication activities are the key factors. The incremental benefits from the publicity of the activities and the government subsidies can be used to incent the PCO enterprises' activities, which may be failure without the government promotion. This study confirms the decisive role of the strategic choices of PCO enterprises and the government for effective cockroach eradication activities. Therefore, before the campaign is launched, it is necessary to take into account the economic benefits of PCO enterprises and the public interests of the governments so that the game system can evolve out of the "ineffective" and undesirable "locked" state and evolve towards the ideal state, while would be a basis for other anti- pest efforts.


Asunto(s)
Cucarachas , Animales , Evolución Biológica , Simulación por Computador , Teoría del Juego , Gobierno Local , China
14.
Compr Psychiatry ; 124: 152395, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37216805

RESUMEN

BACKGROUND: Patients with schizophrenia (SCH) have deficits in source monitoring (SM), speech-in-noise recognition (SR), and auditory prosody recognition. This study aimed to test the covariation between SM and SR alteration induced by negative prosodies and their association with psychiatric symptoms in SCH. METHODS: Fifty-four SCH patients and 59 healthy controls (HCs) underwent a speech SM task, an SR task, and the assessment of positive and negative syndrome scale (PANSS). We used the multivariate analyses of partial least squares (PLS) regression to explore the associations among SM (external/internal/new attribution error [AE] and response bias [RB]), SR alteration/release induced by four negative-emotion (sad, angry, fear, and disgust) prosodies of target speech, and psychiatric symptoms. RESULTS: In SCH, but not HCs, a profile (linear combination) of SM (especially the external-source RB) was positively associated with a profile of SR reductions (induced especially by the angry prosody). Moreover, two SR reduction profiles (especially in the anger and sadness conditions) were related to two profiles of psychiatric symptoms (negative symptoms, lack of insight, and emotional disturbances). The two PLS components explained 50.4% of the total variances of the release-symptom association. CONCLUSION: Compared to HCs, SCH is more likely to perceive the external-source speech as internal/new source speech. The SM-related SR reduction induced by the angry prosody was mainly associated with negative symptoms. These findings help understand the psychopathology of SCH and may provide a potential direction to improve negative symptoms via minimizing emotional SR reduction in schizophrenia.


Asunto(s)
Esquizofrenia , Percepción del Habla , Humanos , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico , Habla , Emociones/fisiología , Ira , Miedo , Percepción del Habla/fisiología
15.
Front Microbiol ; 14: 1122966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891398

RESUMEN

In this study, micron-sized monodisperse SiO2 microspheres were used as sacrificial templates, and chitosan/polylactic acid (CTS/PLA) bio-microcapsules were produced using the layer-by-layer (LBL) assembly method. Microcapsules isolate bacteria from their surroundings, forming a separate microenvironment and greatly improving microorganisms' ability to adapt to adverse environmental conditions. Morphology observation indicated that the pie-shaped bio-microcapsules with a certain thickness could be successfully prepared through LBL assembly method. Surface analysis showed that the LBL bio-microcapsules (LBMs) had large fractions of mesoporous. The biodegradation experiments of toluene and the determination of toluene degrading enzyme activity were also carried out under external adverse environmental conditions (i.e., unsuitable initial concentrations of toluene, pH, temperature, and salinity). The results showed that the removal rate of toluene by LBMs can basically reach more than 90% in 2 days under adverse environmental conditions, which is significantly higher than that of free bacteria. In particular, the removal rate of toluene by LBMs can reach four times that of free bacteria at pH 3, which indicates that LBMs maintain a high level of operational stability for toluene degradation. Flow cytometry analysis showed that LBL microcapsules could effectively reduce the death rate of the bacteria. The results of the enzyme activity assay showed that the enzyme activity was significantly stronger in the LBMs system than in the free bacteria system under the same unfavorable external environmental conditions. In conclusion, the LBMs were more adaptable to the uncertain external environment, which provided a feasible bioremediation strategy for the treatment of organic contaminants in actual groundwater.

16.
Front Cardiovasc Med ; 10: 1108538, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970343

RESUMEN

Introduction: To retrospectively investigate the clinical characteristics and risk factors of cardiac surgery associated-acute kidney injury (CS-AKI) progressed to chronic kidney disease (CKD) in adults and to evaluate the performance of clinical risk factor model for predicting CS-AKI to CKD. Methods: In this retrospective, observational cohort study, we included patients who were hospitalized for CS-AKI without a prior CKD [estimated glomerular filtration rate (eGFR) < 60 ml · min-1·1.73 m-2] at Central China Fuwai Hospital from January 2018 to December 2020. Survived patients were followed up for 90 days, the endpoint was CS-AKI to CKD, and then divided them into two groups (with or without CS-AKI to CKD). The baseline data including demographics, comorbidities, renal function, and other laboratory parameters were compared between two groups. The logistic regression model was used to analyze the risk factors for CS-AKI to CKD. Finally, receiver operator characteristic (ROC) curve was drawn to evaluate the performance of the clinical risk factor model for predicting CS-AKI to CKD. Results: We included 564 patients with CS-AKI (414 males, 150 females; age: 57.55 ± 11.86 years); 108 (19.1%) patients progressed to new-onset CKD 90 days after CS-AKI. Patients with CS-AKI to CKD had a higher proportion of females, hypertension, diabetes, congestive heart failure, coronary heart disease, low baseline eGFR and hemoglobin level, higher serum creatinine level at discharge (P < 0.05) than those without CS-AKI to CKD. Multivariate logistic regression analysis revealed that female sex(OR = 3.478, 95% CI: 1.844-6.559, P = 0.000), hypertension (OR = 1.835, 95% CI: 1.046-3.220, P = 0.034), coronary heart disease (OR = 1.779, 95% CI: 1.015-3.118, P = 0.044), congestive heart failure (OR = 1.908, 95% CI: 1.124-3.239, P = 0.017), preoperative low baseline eGFR (OR = 0.956, 95% CI: 0.938-0.975, P = 0.000), and higher serum creatinine level at discharge (OR = 1.109, 95% CI: 1.014-1.024, P = 0.000) were independent risk factors for CS-AKI to CKD. The clinical risk prediction model including female sex, hypertension, coronary heart disease, congestive heart failure, preoperative low baseline eGFR, and higher serum creatinine level at discharge produced a moderate performance for predicting CS-AKI to CKD (area under ROC curve = 0.859, 95% CI: 0.823-0.896). Conclusion: Patients with CS-AKI are at high risk for new-onset CKD. Female sex, comorbidities, and eGFR can help identify patients with a high risk for CS-AKI to CKD.

17.
J Clin Med ; 12(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36902558

RESUMEN

Intestinal lymphatic, known as lacteal, plays a critical role in maintaining intestinal homeostasis by regulating several key functions, including the absorption of dietary lipids, immune cell trafficking, and interstitial fluid balance in the gut. The absorption of dietary lipids relies on lacteal integrity, mediated by button-like and zipper-like junctions. Although the intestinal lymphatic system is well studied in many diseases, including obesity, the contribution of lacteals to the gut-retinal axis in type 1 diabetes (T1D) has not been examined. Previously, we showed that diabetes induces a reduction in intestinal angiotensin-converting enzyme 2 (ACE2), leading to gut barrier disruption. However, when ACE2 levels are maintained, a preservation of gut barrier integrity occurs, resulting in less systemic inflammation and a reduction in endothelial cell permeability, ultimately retarding the development of diabetic complications, such as diabetic retinopathy. Here, we examined the impact of T1D on intestinal lymphatics and circulating lipids and tested the impact of intervention with ACE-2-expressing probiotics on key aspects of gut and retinal function. Akita mice with 6 months of diabetes were orally gavaged LP-ACE2 (3x/week for 3 months), an engineered probiotic (Lactobacillus paracasei; LP) expressing human ACE2. After three months, immunohistochemistry (IHC) was used to evaluate intestinal lymphatics, gut epithelial, and endothelial barrier integrity. Retinal function was assessed using visual acuity, electroretinograms, and enumeration of acellular capillaries. LP-ACE2 significantly restored intestinal lacteal integrity as assessed by the increased expression of lymphatic vessel hyaluronan receptor 1 (LYVE-1) expression in LP-ACE2-treated Akita mice. This was accompanied by improved gut epithelial (Zonula occludens-1 (ZO-1), p120-catenin) and endothelial (plasmalemma vesicular protein -1 (PLVAP1)) barrier integrity. In Akita mice, the LP-ACE2 treatment reduced plasma levels of LDL cholesterol and increased the expression of ATP-binding cassette subfamily G member 1 (ABCG1) in retinal pigment epithelial cells (RPE), the population of cells responsible for lipid transport from the systemic circulation into the retina. LP-ACE2 also corrected blood-retinal barrier (BRB) dysfunction in the neural retina, as observed by increased ZO-1 and decreased VCAM-1 expression compared to untreated mice. LP-ACE2-treated Akita mice exhibit significantly decreased numbers of acellular capillaries in the retina. Our study supports the beneficial role of LP-ACE2 in the restoration of intestinal lacteal integrity, which plays a key role in gut barrier integrity and systemic lipid metabolism and decreased diabetic retinopathy severity.

18.
Nanoscale ; 15(14): 6822-6829, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36960715

RESUMEN

Heterostructure construction with mixed transition metal sulfides has been recognized as a promising strategy to boost the performance of sodium-ion batteries (SIBs). Herein, a carbon-decorated MoS2/CoS heterostructure on carbon cloth (MoS2/CoS@CC) as a free-standing anode for SIBs was synthesized via a facile growth-carbonization strategy. In the composite, the generated built-in electric field at MoS2 and CoS heterointerfaces is beneficial for elevating the electron conductivity, thus expediting the Na-ion transport rate. Moreover, different redox potentials between MoS2 and CoS can effectively mitigate the mechanical strain induced by repeated Na+ de-/intercalation, thus ensuring the structural integrity. In addition, the carbon skeleton derived from the carbonization of glucose can enhance the conductivity of the electrode and maintain the structural integrity. Consequently, the resulting MoS2/CoS@CC electrode delivers a reversible capacity of 605 mA h g-1 at 0.5 A g-1 after 100 cycles, and prominent rate performance (366 mA h g-1 at 8.0 A g-1). Theoretical calculations also confirm that the establishment of a MoS2/CoS heterojunction can powerfully promote the electron conductivity, thereby enhancing the Na-ion diffusion kinetics.

19.
J Appl Physiol (1985) ; 134(5): 1135-1153, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36892893

RESUMEN

Angiotensin (1-7) [Ang (1-7)] is an active heptapeptide of the noncanonical arm of the renin-angiotensin system that modulates molecular signaling pathways associated with vascular and cellular inflammation, vasoconstriction, and fibrosis. Preclinical evidence suggests that Ang (1-7) is a promising therapeutic target that may ameliorate physical and cognitive function in late life. However, treatment pharmacodynamics limits its clinical applicability. Therefore, this study explored the underlying mechanisms altered by a genetically modified probiotic (GMP) that expresses Ang (1-7) combined with and without exercise training in an aging male rat model as a potential adjunct strategy to exercise training to counteract the decline of physical and cognitive function. We evaluated cross-tissue (prefrontal cortex, hippocampus, colon, liver, and skeletal muscle) multi-omics responses. After 12 wk of intervention, the 16S mRNA microbiome analysis revealed a main effect of probiotic treatment within- and between groups. The probiotic treatment enhanced α diversity (Inverse Simpson (F[2,56] = 4.44; P = 0.02); Shannon-Wiener (F[2,56] = 4.27; P = 0.02)) and ß-diversity (F[2,56] = 2.66; P = 0.01) among rats receiving our GMP. The analysis of microbes' composition revealed three genera altered by our GMP (Enterorhabdus, Muribaculaceae unclassified, and Faecalitalea). The mRNA multi-tissue data analysis showed that our combined intervention upregulated neuroremodeling pathways on prefrontal cortex (i.e., 140 genes), inflammation gene expression in the liver (i.e., 63 genes), and circadian rhythm signaling on skeletal muscle. Finally, the integrative network analysis detected different communities of tightly (|r| > 0.8 and P < 0.05) correlated metabolites, genera, and genes in these tissues.NEW & NOTEWORTHY This manuscript uses a multiomics approach (i.e., microbiome, metabolomics, and transcriptomics) to explore the underlying mechanisms driven by a genetically modified probiotic (GMP) designed to express angiotensin (1-7) combined with moderate exercise training in an aged male rat model. After 12 wk of intervention, our findings suggest that our GMP enhanced gut microbial diversity while exercise training altered the transcriptional response in relevant neuroremodeling genes, inflammation, and circadian rhythm signaling pathways in an aging animal model.


Asunto(s)
Multiómica , Condicionamiento Físico Animal , Ratas , Animales , Masculino , Condicionamiento Físico Animal/fisiología , Sistema Renina-Angiotensina/fisiología , Inflamación
20.
Nat Commun ; 14(1): 138, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627283

RESUMEN

ß-Nucleosides and their analogs are dominant clinically-used antiviral and antitumor drugs. α-Nucleosides, the anomers of ß-nucleosides, exist in nature and have significant potential as drugs or drug carriers. Currently, the most widely used methods for synthesizing ß- and α-nucleosides are via N-glycosylation and pentose aminooxazoline, respectively. However, the stereoselectivities of both methods highly depend on the assisting group at the C2' position. Herein, we report an additive-controlled stereodivergent iodocyclization method for the selective synthesis of α- or ß-nucleosides. The stereoselectivity at the anomeric carbon is controlled by the additive (NaI for ß-nucleosides; PPh3S for α-nucleosides). A series of ß- and α-nucleosides are prepared in high yields (up to 95%) and stereoselectivities (ß:α up to 66:1, α:ß up to 70:1). Notably, the introduced iodine at the C2' position of the nucleoside is readily functionalized, leading to multiple structurally diverse nucleoside analogs, including stavudine, an FDA-approved anti-HIV agent, and molnupiravir, an FDA-approved anti-SARS-CoV-2 agent.


Asunto(s)
Fármacos Anti-VIH , COVID-19 , Humanos , Nucleósidos , Estereoisomerismo , Antivirales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...